skip to main content


Search for: All records

Creators/Authors contains: "Pedram, Massoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Superconductor Electronics (SCE) is a fast and power-efficient technology with great potential for overcoming conventional CMOS electronics' scaling limits. Nevertheless, the primary challenge confronting SCE today is its integration level, which lags several orders of magnitude behind CMOS circuits. In this study, we have innovated and simulated a novel logic family grounded in the principles of phase shifts occurring in 0 and π Josephson junctions. The fast phase logic (FPL) eliminates the need for large inductor loops and shunt resistances by combining the half-flux and phase logic. Therefore, the Josephson junction (JJ) area only limits the integration density. The cells designed with this paradigm are fast, and the clock-to-Q delay for logic cells is about 4ps. While maintaining over 50% parameter margins for wiring cells. This logic is power efficient and can increase the integration by at least 100 times in the SCE chips.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. The control of cryogenic qubits in today’s super-conducting quantum computer prototypes presents significant scalability challenges due to the massive costs of generating/routing the analog control signals that need to be sent from a classical controller at room temperature to the quantum chip inside the dilution refrigerator. Thus, researchers in industry and academia have focused on designing in-fridge classical controllers in order to mitigate these challenges. Due to the maturity of CMOS logic, many industrial efforts (Microsoft, Intel) have focused on Cryo-CMOS as a near-term solution to design in-fridge classical controllers. Meanwhile, Supercon-ducting Single Flux Quantum (SFQ) is an alternative, less mature classical logic family proposed for large-scale in-fridge controllers. SFQ logic has the potential to maximize scalability thanks to its ultra-high speed and very low power consumption. However, architecture design for SFQ logic poses challenges due to its unconventional pulse-driven nature and lack of dense memory and logic. Thus, research at the architecture level is essential to guide architects to design SFQ-based classical controllers for large-scale quantum machines.In this paper, we present DigiQ, the first system-level design of a Noisy Intermediate Scale Quantum (NISQ)-friendly SFQ-based classical controller. We perform a design space exploration of SFQ-based controllers and co-design the quantum gate decompositions and SFQ-based implementation of those decompositions to find an optimal SFQ-friendly design point that trades area and power for latency and control while ensuring good quantum algorithmic performance. Our co-design results in a single instruction, multiple data (SIMD) controller architecture, which has high scalability, but imposes new challenges on the calibration of control pulses. We present software-level solutions to address these challenges, which if unaddressed would degrade quantum circuit fidelity given the imperfections of qubit hardware.To validate and characterize DigiQ, we first implement it using hardware description languages and synthesize it using state-of-the-art/validated SFQ synthesis tools. Our synthesis results show that DigiQ can operate within the tight power and area budget of dilution refrigerators at >42,000-qubit scales. Second, we confirm the effectiveness of DigiQ in running quantum algorithms by modeling the execution time and fidelity of a variety of NISQ applications. We hope that the promising results of this paper motivate experimentalists to further explore SFQ-based quantum controllers to realize large-scale quantum machines with maximized scalability. 
    more » « less
  4. Single flux quantum (SFQ) logic is a promising technology to replace complementary metal-oxide-semiconductor logic for future exa-scale supercomputing but requires the development of reliable EDA tools that are tailored to the unique characteristics of SFQ circuits, including the need for active splitters to support fanout and clocked logic gates. This article is the first work to present a physical design methodology for inserting hold buffers in SFQ circuits. Our approach is variation-aware, uses common path pessimism removal and incremental placement to minimize the overhead of timing fixes, and can trade off layout area and timing yield. Compared to a previously proposed approach using fixed hold time margins, Monte Carlo simulations show that, averaging across 10 ISCAS’85 benchmark circuits, our proposed method can reduce the number of inserted hold buffers by 8.4% with a 6.2% improvement in timing yield and by 21.9% with a 1.7% improvement in timing yield. 
    more » « less
  5. In this article, we present a low-energy inference method for convolutional neural networks in image classification applications. The lower energy consumption is achieved by using a highly pruned (lower-energy) network if the resulting network can provide a correct output. More specifically, the proposed inference method makes use of two pruned neural networks (NNs), namely mildly and aggressively pruned networks, which are both designed offline. In the system, a third NN makes use of the input data for the online selection of the appropriate pruned network. The third network, for its feature extraction, employs the same convolutional layers as those of the aggressively pruned NN, thereby reducing the overhead of the online management. There is some accuracy loss induced by the proposed method where, for a given level of accuracy, the energy gain of the proposed method is considerably larger than the case of employing any one pruning level. The proposed method is independent of both the pruning method and the network architecture. The efficacy of the proposed inference method is assessed on Eyeriss hardware accelerator platform for some of the state-of-the-art NN architectures. Our studies show that this method may provide, on average, 70% energy reduction compared to the original NN at the cost of about 3% accuracy loss on the CIFAR-10 dataset. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)